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This paper presents a study to achieve discrete entropy consistency using artificial and physical diffusion
mechanisms. The study begins with the one-dimensional viscous Burgers equation, specifically looking at the shock
results of entropy-conserved fluxes combined with a few choices of artificial and physical viscous diffusions. The
approach is then repeated for the Navier–Stokes equations. Overall, it is demonstrated that the artificial viscosity (or
entropy) terms are still needed in addition to physical viscosity to achieve entropy consistency in shock predictions,
although one of the artificial terms can be dropped for high viscosity or low Reynolds number flow.
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1. Introduction

In developing shock-capturing schemes, it is usually
difficult to strike a balance between accuracy and
practicality. As we strive to improve its shock capturing
capabilities, we must also maintain simplicity in the
scheme to keep it from being too computationally
expensive. Currently, one of the challenges in shock
capturing methods is to include auxiliary constraints
(i.e. entropy and vorticity control) to the primary
constraints (i.e. mass, momentum and energy conserva-
tion) in the design of the numerical schemes. For
instance, the inclusion of discrete entropy conditions in
the numerical flux function. To achieve this, a low-cost,
entropy-consistent flux function was proposed in Ismail
(2006), Roe (unpublished) and Ismail and Roe (2009).
This scheme has been compared to other schemes and
was shown to eliminate one-dimensional shock in-
stabilities in Kitamura et al. (2009).

The said flux function was constructed from three
main ideas that are manifested in the form of three
distinct components: entropy conservation, entropy
stability and entropy production. Entropy conservation
ensures that entropy is neither created nor destroyed,
and this is true for smooth flows (Tadmor 1987, Lefloch
et al. 2002, Roe unpublished). If shocks are present, it is
expected that entropy will be generated across this
discontinuity. The question remains if entropy is
produced with the correct sign and magnitude. Entropy
stability ensures that the entropy change within the
system is of the correct sign (Barth 1999). The scheme is
then said to be entropy consistent if it generates entropy

with the correct sign and magnitude across any
discontinuity such as shock or contact discontinuities.

The flux function of Ismail and Roe (2009) was
designed to be entropy-stable for shocks (and contact
discontinuities) of any strength, but its derivation to
achieve entropy consistency was based on weak
shocks. For strong shocks, the flux function required
some adjustments based on empirical observations,
and although the entropy-consistent flux showed good
performance on a variety of shock strengths, the whole
principle of entropy production was based on inviscid
formulation. In this paper, we explore the effects of
physical viscosity as a part of the entropy production
term similar to the work of Tadmor and Zhong (2006a,
b) and Fjordholm et al. (2008), but unlike the work we
are presenting herein, previous work only worked on
one viscosity value. Hopefully, our approach would
provide a more complete picture in terms of generating
entropy through physical viscosity, which in turn could
bring the solution closer to precisely satisfying the
second law of thermodynamics.

The idea of incorporating the physical viscosity is
first investigated on the viscous Burgers equation
where the focus will be on shock predictions. Later,
the approach is expanded and applied to the Navier–
Stokes equations but without heat transfer, since this is
a preliminary study. The schemes of Roe, Tadmor–
Zhong (TZV), Entropy Stable with added viscosity
(ESV) and Entropy Consistent with added viscosity
(EC2V) are tested on steady and unsteady shock
problems in one dimension.
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It must be emphasised that it is not easy to
analytically relate entropy production to shock quality
since most conservation laws only exhibit entropy as a
decreasing function without actually having known the
precise entropy reduction. Thus, achieving entropy
consistency in this paper will mostly be based on
numerical experiments. Our objective here is to merely
find an ‘acceptable’ viscous shock profile for both the
Burgers and Navier–Stokes equations.

2. Burgers’ equation as the basic model

The simplicity of Burgers’ equation makes it ideal as
the base model for the viscosity added entropy-
consistent flux.

2.1. Entropy conservation, stability and consistency

The entropy-consistent flux function was derived based
on the inviscid Burgers equation:

@u

@t
þ
@ðu22 Þ
@x
¼ n

@2u

@x2
; ð1Þ

where n ¼ 0. Physical laws require that entropy is
always increasing (or decreasing, depending on the
point of reference) in a system undergoing a thermo-
dynamic process. Thus, the notion can be expressed in
mathematical terms as a decreasing function:

@U

@t
þ @F
@x
� 0; ð2Þ

where U ¼ u2, v ¼ @U
@u and F ¼ 2

3 u
3. Entropy conserva-

tion requires that equality is achieved in Equation (2),
thus a numerical method that conserves entropy must
discretely satisfy equality in Equation (2) such as in
Tadmor (1987) and Roe (unpublished). Entropy
stability implies that a numerical method discretely
satisfies the inequality, as in Barth (1999). The choice
of U ¼ u2 reflects the use of numerical entropy instead
of its physical counterpart (S ¼ �u2) in calculations
involving the Burgers’ equation model. This is to
ensure that, whilst the localised entropy may drop due
to the change in velocity, its value will always be
bounded by zero, and thus the inequality of Equation
(2) is enforced without fail. A more detailed discussion
on numerical and physical entropy can be found in
Hughes et al. (1986) and Ismail and Roe (2009).
Entropy consistency means that a numerical method
produces entropy with the correct sign and magnitude,
as in Ismail and Roe (2009). The following discussion
briefly presents an entropy-consistent flux function for
the Burgers equation.

The inviscid part of Equation (1) is discretised
using a semi-discrete finite volume method at cell j with
a uniform size of Dx such that

@u

@t

� �
j

Dx ¼ � fjþ1
2
� fj�1

2

� �
; ð3Þ

where fj�1
2
¼ f� are the fluxes to be evaluated at the

respective interfaces. An entropy-consistent flux func-
tion would be

f � ¼ fc � fs � fp; ð4aÞ

fc ¼
1

6
u2L þ uRuL þ u2R
� �

; ð4bÞ

fs ¼
1

4
uL þ uRj j½u�; ð4cÞ

fp ¼
j½u�j½u�
12

; ð4dÞ

where ½�� is the difference function, which in this
instance ½u� ¼ uR � uL. Equation (4) denotes the flux
interface * which is shared by two adjacent cell values
denoted by the subscripts L and R representing the left
and right cells, respectively. The term fc represents the
entropy-conserved flux (Tadmor 1987, Roe unpub-
lished). Coupling fc with fs represents an entropy stable
flux of as in Tadmor (2002) and the references therein.
The third term fp represents the production term.
Recall that Equation (4a) is also known as the original
Roe-flux from Roe (1981) with an entropy fix by
Harten and Hyman (1983).

2.2. Entropy generation via added physical viscosity

For the viscous part of Equation (1), a central differencing
approach is used.We call this as the added viscosity term.
The idea and mechanism of how physical viscosity
generates entropy was previously developed in Tadmor
(2004). Alternatively, using the approach and the nota-
tions developed in Ismail and Roe (2009), entropy
generation at each flux interface is defined by the
difference of entropy produced by any flux and the
entropy produced by an entropy-conserved flux. There-
fore, the added physical viscosity and the numerical
viscosity terms will generate entropy in the form of:

_U ¼ � 1

2
ðj�aj þ a½a�Þ½u�½v� � n

Dx
½u�½v�

¼ � 1

2
ðj�aj þ a½a�Þ du

dv
½v�2 � n

ð2DxÞ ½v�
2;

ð5Þ

implying that the discrete physical viscosity term
produces a decreasing entropy generation. In Equation
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(5), the term 1
2 ðj�aj þ a½a�Þ dudv ½v�

2 represents upwinding
that ensures entropy stability as prescribed by Equa-
tion (2), and if a ¼ 1=6 is chosen, we get the inviscid
entropy-consistent flux as given in Equation (4). Here,
the variable a is the wave speed for the Burgers’
equation and �a denotes its averaged quantity. The term
du
dv ½v2�, which is just a different way of reflecting the
change of u in ½u�½v�, is used since it is a better
representation for extension to systems of equations.
As mentioned in the introduction section, it is difficult
to determine the exact entropy generation across a
shock but here at least we are certain that the discrete
physical viscosity is producing entropy with the correct
sign. Achieving entropy consistency herein will be
based on the entropy produced by both the artificial
and physical diffusion. Thus, the entropy-consistent
flux with physical viscosity added in its final form can
be written as

f� ¼ 1

6
ðu2L þ uRuL þ u2RÞ �

1

4
juL þ uRjðuR � uLÞ

� n
ðDxÞ ðuR � uLÞ:

ð6Þ

2.3. Time discretisation and second-order extensions

Although there are other time integration methods that
can be used, herein a second-order Runge–Kutta time
discretisation method was used to solve Equation (1),
where:

unþ1 ¼ un þ Dtf tn þ 1

2
Dt; un þ 1

2
Dtfðtn; unÞ

� �
: ð7Þ

The term fðtn; unÞ and its variations represent the flux
function at its respective point tn in time.

Fjordholm et al. (2008) presented a second-order
limited entropy stable fluxes for the system of shallow
water equations. Our second-order spatial method is
based on a TVD/TVB MUSCL Van Leer (1979)
approach. The second-order flux uses a linearly
interpolated cell reconstruction with the ‘minmod’
limiter (fmmðrÞ) defined as

fmmðrÞ ¼ max½0;minð1; rÞ�; lim
r!1

fmmðrÞ ¼ 1; ð8Þ

and the superbee limiter defined as

fsbðrÞ ¼ max½0;minð2r; 1Þ;minðr; 2Þ�; lim
r!1

fsbðrÞ ¼ 2;

ð9Þ

prior to solving f� at the cell interfaces. The linear (or
higher order polynomial) spatial interpolation within
each cell only increases the accuracy of velocity
inserted into the flux function without altering the
form of Equation (4) hence preserving entropy

conservation, stability or consistency. Since a semi-
discrete approach is employed, the Runge–Kutta time
discretisation (or similar) will still produce an entropy-
consistent method.

3. Extending to the Navier–Stokes equations

In vector form, the Navier–Stokes equations can be
written as

@u

@t
þ @f

@x
¼ @u
@t
þ A

@u

@x
¼ n

@fv
@x

: ð10Þ

Here, n is the viscosity coefficient, u are the mass,
momentum and energy variables while f, and fv their
respective inviscid and viscous fluxes.

u ¼ r; ru; r
pðg� 1Þ

r
þ u2

2

� �� �T

; ð11aÞ

f ¼ ru; ru2 þ p;ru
pðg� 1Þ

r
þ u2

2
þ p

r

� �� �T

; ð11bÞ

fv ¼ 0;
@u

@x
; 0

� �T

: ð11cÞ

Note that this is the Navier–Stokes equations in which
the dissipation is due to skin friction; the heat transfer
is excluded in this paper to let us focus on the effects of
added viscosity towards the inviscid flux. Like the
Burgers equation, a similar finite volume discretisation
(both first- and second-order time and spatial dis-
cretisation methods) is used for the Navier–Stokes
equations. The main interest lies in how to discretise
the interface fluxes f� such that entropy is discretely
conserved (equality of Equation (2)), and that the flux
function is entropy stable (discretely satisfy Equation
(2)) or entropy consistent.

3.1. The scheme of Tadmor–Zhong (2006)

There are a number of entropy-conserved fluxes
available in Tadmor (2002) and references therein but
the one in Tadmor and Zhong (2006a) (Equations
(3.19a) and (3.19b), with the choice of entropy pair as
shown in Equation (4.1), and no heat conduction) will
be used for comparison purposes. Consider the semi-
discrete approximation

d

dt
unðtÞþ

1

Dxn
ðf�nþ1

2
� f�n�1

2
Þ¼ E

Dxn

dnþ1�dn

Dxnþ1
2

�dn�dn�1
Dxn�1

2

 !
:

ð12Þ
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Here, f� is an entropy conservative numerical flux

f�nþ1
2
¼
X3
j¼1

cðvjþ1
nþ1

2

Þ � cðvj
nþ1

2

Þ

h‘j
nþ1

2

;Dvnþ1
2
i

‘j
nþ1

2

; ð13Þ

and vTZV are the entropy variables used by Tadmor
and Zhong (2006a).

vTZV ¼ UuðuÞ ¼ �ðrpÞ�
g

1þg

E
�m
r

24 35: ð14Þ

The entropy pair chosen is

ðUðuÞ;FðuÞÞ ¼ 1þ g
1� g

ðrpÞ
1

1þg;
1þ g
1� g

qðrpÞ
1

1þg

� �
: ð15Þ

We leave out heat conduction by setting k ¼ 0.

3.2. Entropy stable and entropy-consistent scheme

Let us define another entropy function U ¼ � rs
g�1 with

s ¼ ln p� g ln r being the physical entropy. Similar to
the Burgers’ equation, we compute the entropy variables
as:

v ¼ @U
@u
¼ g� s

g� 1
� 1

2

r
p
ðu2Þ; ru

p
;� r

p

� �T

: ð16Þ

This choice of entropy variables was selected since it is
the only form that can be used in both the Euler and
the Navier–Stokes equations (Hughes et al. 1986),
although there are other choices of entropy variables
available as in Tadmor (2002). Entropy stability for the
Euler equations Barth (1999) leads to the entropy
stable (ES) flux given by those references, which was
also used in Ismail and Roe (2009)

f� ¼ fc �
1

2
RDRT½v� ¼ fs: ð17Þ

In this equation, fc is the entropy-conserved flux (Roe
unpublished) computed as averaged quantities of its
components:

fcðuL; uRÞ ¼
r̂û

r̂û2 þ bp1
r̂ûĤ

24 35; ð18Þ

where the averaged (̂:) values are calculated based on
equations in Appendix A. The averaged right eigen-
vectors R̂ is

bR ¼ 1 1 1
û� â û ûþ â
Ĥ� ûâ 1

2 û
2 Ĥþ ûâ

24 35: ð19Þ

Next, D̂ is a positive dissipation matrix composed of
the matrix of absolute eigenvalues and a scaling term

bD ¼ bLbS ¼ jû� âj 0 0
0 jûj 0
0 0 jûþ âj

24 35 r̂
2g 0 0

0 ðg�1Þr̂
g 0

0 0 r̂
2g

2664
3775:
ð20Þ

An entropy-consistent Euler flux (EC2) is written by
modifying the dissipative matrix Ismail and Roe (2009)

bDEC2 ¼ ðbLEC2 þ aEC2½Lu�a�ÞbS ð21aÞ

bLEC2 ¼
ð1þ bÞjû� âj 0 0

0 jûj 0
0 0 ð1þ bÞjûþ âj

24 35 ð21bÞ
aEC2 ¼ ðamax � aminÞðmaxð0; signðdMmax �MÞÞÞ;

ð21cÞ

where b¼ 1/6, amax¼ 2.0, amin¼ 1/6, and dMmax¼ 0.5.
These additional flux terms (O½�3) will be referred to as
the entropy production (or third) term fp.

The derivation of an entropy-consistency Euler flux
was semi-empirically determined in Ismail and Roe
(2009), in the sense that the derivation of precise entropy
production was based on an analytical formulation of a
weak shock with only one intermediate state. For strong
shocks with multiple intermediate states, the derivation
would require numerical experiments to determine some
of the parameters. Note that the viscous fluxes (fv) are
discretised using a pure central difference as done in the
viscous Burgers equation.

The entropy produced for the Euler equations
using the ES flux in Ismail and Roe (2009) is

_U ¼ � 1

2
½v�TRDRT½v� � 0; ð22Þ

since it is a product of a positive definite matrix hence
generating entropy with the correct sign. In addition,
using D ¼ DEC2 would ensure the entropy production
would be analytically correct for weak shocks and
empirically correct for shocks of any strength.

3.3. Incorporating physical viscosity

Similar to the Burgers analysis, including the physical
viscosity would then give

_U ¼ � 1

2
½v�TRDRT½v� � n

ð2DxÞ ½v�
Tð0; ½u�; 0ÞT

¼ � 1

2
½v�TRDRT½v� � n

ð2DxÞ
ru
p

� 	
½u�;

ð23Þ

4 A.N. Mohammed and F. Ismail

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

 a
t 1

2:
11

 2
4 

O
ct

ob
er

 2
01

5 



which implies that the discrete physical viscosity would
also generate a decreasing entropy since density and
pressure are always positive. Thus, entropy stability is
achieved when including the discrete physical viscosity.
However, to achieve entropy consistency for the
Navier–Stokes would require numerical experiments.

4. Results of Viscous Burgers’ equation

Tests were conducted using two shock capturing
methods, namely the entropy stable flux with added
viscosity (ESV) and the Roe flux with added viscosity
(RoeV). Note that when capturing shocks the RoeV
flux is identical to the entropy consistent (EC) flux with
viscosity. This is not true when capturing expansion
fans as was shown in Ismail and Roe (2009). These flux
functions were tested with using a wide range of
viscosity coefficients ranging from very small (Oð10Þ�7)
to very large (Oð1Þ). However, for brevity, results
reported here are for selected values relevant for the
respective cases. Tests were run initially using first-
order accurate spatial and temporal scheme, followed
by the second-order version. The time discretisation
method for the second-order version is based on
second Runge–Kutta method with ‘minmod’ limiter
for the flux functions.

4.1. Steady shock

The entropy-consistent flux with added viscosity was
tested in a steady state shock situation with the
following initial conditions:

uðx; 0Þ ¼ 1; if x 0
�1; if x � 0:



ð24Þ

For these tests, 40 computational cells were used with
non-reflecting boundary conditions on the left and
right sides of the domain. The CFL number was set to
0.1. This low value was chosen due to the constraints
that are dictated by both the stability limit of
advection-diffusion problem and the nature of explicit
semi discrete flux functions which works best using a
low CFL number. The flux function based on Burgers’
equation works well even when simulated at a CFL
value of up to 0.8, but this may not be the case for the
Navier–Stokes based scheme. Therefore, to maintain
uniformity, the CFL value is kept at 0.1 unless stated
otherwise. The fluxes are then compared to the exact
solution for Burgers’ equation at the corresponding
particular value of viscosity being used, as found in
Masatsuka (2009):

u ¼ 1� tanh
x

2n

� �
: ð25Þ

The first test was done under low viscosity conditions
of n � 0:001. Our results indicate that there are very
little differences for these conditions, so only results of
n ¼ 0:001 are included. As seen in Figure 1(a), the ESV
flux exhibits considerable overshoot and undershoot
before and after the shock. Although the RoeV (or the
ECV) flux provides a closer shock profile to the exact
solution, the shock profiles are slightly more diffused
than it is supposed to be. This is reflected in

Figure 1. Experiment on Burgers’ equation, with viscosity added flux at n ¼ 0:001 compared with the corresponding exact
solution of (a) velocity and (b) entropy.

International Journal of Computational Fluid Dynamics 5
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Figure 1(b), where the entropy generated for both
fluxes are plotted. The RoeV flux produced higher
entropy than the exact solution, while the ESV flux
underestimates the entropy value by a large margin.

A probable reason for this phenomenon lies in how
both the entropy production term and the viscosity
term affects the workings of the respective fluxes. For

ESV, the absence of a production term coupled with a
low coefficient value for viscosity leads to a result that is
severely lacking in entropy production. In contrast, the
production term in the RoeV flux is providing more
than the necessary amount of entropy to the solution,
even with the viscosity being as low as it is. As a result,
the ESV flux manifests its entropy inadequacy as

Figure 2. Experiment on Burgers’ equation, with viscosity added flux at n ¼ 0:01 compared with the corresponding exact
solution of (a) velocity and (b) entropy.

Figure 3. Experiment on Burgers’ equation, with viscosity added flux at n ¼ 0:1 compared with the corresponding exact
solution of (a) velocity and (b) entropy.
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overshoots, while RoeV provides a slightly diffused
solution for velocity with the viscosity term proving to
be inconsequential for this particular case.

Next, n is increased to 0.01, with simulation results
of velocity shown in Figure 2(a). Compared to the
previous condition, the ESV flux no longer exhibits
overshoots and is able to match the exact solution
reasonably well. Similarly, the RoeV flux also provides
a good representation of the shock, but with a slightly
more diffused profile than the ESV and exact results.
This becomes more apparent in Figure 2(b), looking at
the excess amount of entropy produced by the RoeV
flux compared to the ESV flux.

For this case, our conjecture is that the physical
viscosity coefficient is large enough, enabling the
viscosity term in the ESV flux to produce enough
entropy without the production term. When the
production term is indeed present as is with the
RoeV flux, the solution becomes even more diffused,
due to more entropy being produced than necessary.

In high viscosity condition (n ¼ 0:1), the ESV and
RoeV fluxes provide almost identical solutions, agree-
ing reasonably well with the exact solution as seen in
Figure 3(a). In Figure 3(b), both flux functions
produce almost enough entropy at every point in the
domain to match the correct values. For this case, the
physical shock profile is less steep, hence it can be
viewed as a relatively ‘smooth’ function compared to
previous cases. In this situation, the physical viscosity
coefficient (OðuÞ2) is enough to dominate the solution
and relegates the production term (OðuÞ3) to a
negligible role.

The results for the second-order ESV flux with
‘minmod’ limiter are shown in Figure 4. Similar
patterns were obtained for all three n values
tested compared to the previous first-order tests.
The only difference is that the entropy distribution
is no longer symmetric about the shock perhaps due
to the nonlinearity of the slope limiting process.
Results for the second-order RoeV (or ECV) are also
similar to its first-order results and hence not
included.

Figure 4. Experiment on Burgers’ equation, with viscosity added second-order scheme result for (a) velocity and (b) entropy at
various values of n.

Figure 5. Wavenumber spectra of ESV and ECV fluxes
subjected to randomised initial condition.
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4.2. Burgers problem of turbulence

Figure 5 shows the wavenumber spectra of both the
ESV and ECV fluxes. These fluxes were employed in
Burgers’ problem of turbulence test where the velocity
is subjected to random initial condition, with para-
meters similar to that in Drikakis (2002). The resulting
energy spectra from computations of the fluxes are
compared to k�2, where k is the wavenumber. The
result in Figure 5 is presented without any smoothing
functions applied. The ESV and ECV fluxes exhibit
similar energy spectra results. Even though the fluxes

produce significantly higher energy compared to the
k�2 estimate, the trends are similar in that EðkÞ in
general decreases proportionately with the increase in
k. Additionally, the slope of a smoothened EðkÞ
function of the fluxes look to be similar to that of
k�2. Granted, the spectra of ESV and ECV fluxes are
not quite close to the k�2 line as the results in
Drikakis (2002), but note that these fluxes are only
second-order accurate, whilst those in Drikakis (2002)
are of higher order of accuracy (third order and
above).

Figure 6. Experiment on Navier–Stokes Equation, with density results from (a) different fluxes, (b) the ESV flux, (c) EC2V flux
and (d) RoeV flux compared at various values of n.
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5. Results of Navier–Stokes equations

As mentioned in an earlier section, the original
entropy-consistent flux function is based on the Euler
equations. The inviscid entropy-stable and entropy-
consistent fluxes are termed as the ES flux and the EC2
flux, while the extended versions which include the
physical viscosity are called ESV and EC2V. A third
version of flux that we call RoeV flux, based on the
original Roe flux combined with the physical viscosity,
was also used. As was the case in the previous section,
the CFL value used was maintained at 0.1 for all cases,
unless stated otherwise.

5.1. Steady shock

The entropy-consistent flux with added viscosity was
tested in a steady state shock situation at Mach 1.5. As
in the previous case, a 40 cell setup was used, with non-
reflecting boundary conditions on the left and right.
The simulation was conducted with flow moving from
right to left, to enable data comparison with the exact
solution at n ¼ 0:00025 obtained from Xu (2000). The
Rankine-Hugoniot jump initial condition to the left (0)
and the right (1) of the shock, respectively,

u0 ¼ fðM0Þ 1
gðM0Þ

gðg� 1ÞM2
0

þ 1

2fðM0Þ

� 	
; ð26aÞ

fðM0Þ ¼
2

ðgþ 1ÞM2
0

þ g� 1

gþ 1

� ��1
; ð26bÞ

gðM0Þ ¼
2gM2

0

gþ 1
� g� 1

gþ 1
; ð26cÞ

u1 ¼ 1 1
1

gðg� 1ÞM2
0

þ 1

2

� 	
: ð26dÞ

Results of the Navier–Stokes shock profiles have
the same trend compared to the viscous Burgers
shock profiles. Figure 6 shows the density results
obtained using ESV, EC2V and RoeV fluxes (and for
various n) as compared to the only available exact
solution at n ¼ 0:00025. For low viscosity values
(n � 0:01), the ESV flux function produces non-
monotone schock profiles unlike the EC2V and
RoeV flux functions. The RoeV flux produces a
decent result, but the EC2V flux exhibit a bit more
diffused shock profile. The ESV flux, however,
produces spurious oscillations around the shock
which indicates not enough entropy is being gener-
ated. These results matches the theoretical expecta-
tions since the EC2 flux is designed to produce
the correct amount of entropy across shocks com-
pared to the ES flux, ensuring monotonicity in the
solution. The RoeV flux generally produces a
relatively sharper shock profile than the other fluxes,
due to its nature of having minimal numerical
dissipation and the small physical viscosity coefficient
used in this case.

Figure 7. Experiment on Navier–Stokes Equation, with density results from the flux of (a) first-order and (b) second-order
Tadmor–Zhong coupled with entropy stability and added viscosity compared at various values of n.
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However, for larger viscosity coefficients (n > 0:01),
all three flux functions produces monotone shock
profiles but the RoeV and EC2V results are overly
diffusive. For much larger viscosity conditions
(n � 0:1), the diffusion is overwhelmingly dominant
compared to the inviscid transport mechanism, hence
all three flux functions produce almost identical
results. Note that the results for velocity and pressure
are similar to density hence omitted for brevity.

In Figure 7, the previous case of steady state shock
is repeated, but with using the flux of Tadmor–Zhong
coupled with (a) first- and (b) second-order entropy

stability term and added viscosity (TZV flux) (Tadmor
and Zhong (2006a), Equation (3.19b), with the heat
conduction absent as shown in Equation (2.17)). We
observe a similar overall pattern to the results using
ESV and ECV fluxes as shown in Figure 6, where the
change in density before and after the shock occurs
more gradually with an increase in physical viscosity.
However, in this case, the density after the shock
becomes oscillatory with the magnitude of oscillations
decreasing with the increase of physical viscosity, but
the oscillations increase with the increase of upstream
Mach number. In fact, the TZV flux would produce

Figure 8. Experiment on second-order Navier–Stokes Equation, with density results from (a) the ESV flux, (b) EC2V flux and
(c) RoeV flux compared at various values of n.
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unstable solutions for shocks with very high Mach
number flow unlike the ESV or ECV fluxes. For high
Mach number flows, the behaviour of the ESV and
ECV fluxes are similar to the Ma¼ 1.5 results when
physical viscosity is varied.

Figure 8 shows the second-order results as compar-
ison to Figure 6. The method deploys a linear cell
interpolation with superbee limiter and second-order
Runge–Kutta time discretisation. Overall, the second-
order results produce less smeared shock profiles
relative to the first-order method. However, first- and
second-order methods produce very similar results

when the physical viscosity is very large (ðOÞð10�1Þ or
larger) since the physical viscosity is most dominant.

5.2. Sod’s problem

Next, the fluxes are compared in the case of Sod’s
problem where the initial condition for left and right
states are

½r u p�L ¼ ½1:0 0:0 1:0	 105�; ð27aÞ

½r u p�R ¼ ½0:125 0:0 1:0	 104�: ð27bÞ

Figure 9. Experiment on Sod’s problem, with viscosity added flux compared with the corresponding exact (inviscid) solution in
terms of (a) flux function, (b) cell count, (c) n and (d) second-order flux.
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In the first test, with a prescribed cell count of 100
and a CFL number of 0.4, a viscosity value of 0.00001
was chosen to be used for the ESV flux. The result is
compared to the EC2V, RoeV and the flux of Tadmor–
Zhong coupled with first-order entropy stability and
added viscosity (TZV). These solutions are included
along with the exact (inviscid) solution in Figure 9(a).
We see that the ESV flux with the low viscosity
coefficient results in an overshoot at the shock, whilst
the TZV flux exhibits oscillatory behaviour at both the
contact discontinuity and the shock. Note that for this
unsteady case, the EC2V solution is almost identical to
RoeV solution, similar to the inviscid results Ismail
and Roe (2009). Figure 9(b) shows a similar setup with
the same initial conditions as the first. This time, it is
the grid size that is varied at 41, 101 and 301 nodes
over 10 units of length, with the viscosity coefficient for
the ESV flux being kept at 1.5. We observe that the
simulation result gets closer to the inviscid solution
when the grid size is refined. The same can be said for
the TZV method although its results are omitted for
brevity. These observations match the expected beha-
viour of physical viscosity added schemes, as discussed
by Tadmor and Zhong (2006a). Figure 9(c) shows how
the density profile varies with a change in viscosity. As
we have seen before, overshoots are visible at the shock
for relatively low values of n. However, when a high
viscosity coefficient was used, the overshoot goes away,
resulting in a solution that is close to the RoeV flux.
This pattern is true for both the ESV and TZV
methods, although only the ESV results are included.
Finally, Figure 9(d) shows a similar case to that of
Figure 9(a), except that now the fluxes used are of
second-order accuracy, aided by the minmod limiter.
The result of the second-order case follows the pattern
of its first-order counterpart; it is particularly clear that
the oscillations of the TZV flux near contact disconti-
nuity and the shock becomes more accentuated as
compared to the first-order case.

6. Conclusion

There have been some recent studies in applying the
physical viscosity to replace the numerical viscosity in
solving the problems in conservation laws (Tadmor
and Zhong 2006a, Fjordholm et al. 2008). The results
obtained therein showed that coupling some form of
entropy conserving flux (no numerical diffusion) and
physical diffusion produced oscillatory solutions
around the shock for relatively coarse grids and the
magnitude of these oscillations start to decrease as the
grids were refined and eventually disappear for
extremely fine grids (Tadmor and Zhong 2006a). This
is because as the grids are refined, the Navier–Stokes
true shock structure would be revealed perhaps

reducing the dependence on artificial diffusion (Is-
mail and Roe 2009). Unfortunately, these extremely
fine grids must be finer than the shock thickness
which is not practical for most CFD calculations.
There are also studies in laminar and turbulent flows
which have shown that the numerical viscosity can
be totally removed while maintaining a relatively
good accuracy (Thornber et al. 2008, Drikakis et al.
2009), but these works only focussed mostly on
smooth flows and to certain extent, very weak
shocks.

Our results show that to predict a satisfactory
shock of any strength on a reasonably practical grid
size would require some form of numerical dissipation
in addition to the physical viscous dissipation. If only
the physical viscosity is used, the shock solutions will
be oscillatory for extremely weak shocks even for
first-order methods and unstable for any shock in
general. When solving the Navier–Stokes, entropy
consistency can be achieved by using the entropy-
conserved flux coupled with the physical viscosity
discretisation and at least including the entropy-stable
(second) term for high viscosity conditions (n � 0:01).
This does not imply that the entropy production (EP)
in Equation (4d) for entropy consistency proposed in
Ismail and Roe (2009) based purely on Euler
formulations to be incorrect. However, results herein
merely demonstrate that the EP term is not always
needed to achieve entropy consistency. In fact, our
results indicate that both second and third artificial
viscosity terms are required for low viscosity (high
Reynolds number) flow which is consistent to the
Euler results.

Our proposed entropy-consistent Navier–Stokes
flux has the following form:

f� ¼ fs �maxð0; sgnðn� ncritÞfPÞ � fv; ð28Þ

where sgn and ncrit are the sign function and the critical
viscosity values empirically determined to be 0.01.
Note that this is just a preliminary study in which the
Navier–Stokes equations are without heat transfer
although we hope to address this in the near future.
Overall, the approach we are taking in this paper is
limited for laminar flow where the physical viscosity is
constant. Developing a similar flux function for
computational turbulence, where the eddy viscosity
varies locally perhaps will not be straightforward and
this will be left as one of the avenues for future work.
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Appendix A. Entropy conserving flux

The entropy conserving flux from Equation (18)
satisfies

vTfc ¼ ½ru�; ðA1Þ

and is calculated based on averaged quantities of

fcðuL; uRÞ ¼
r̂û

r̂û2 þ bp1
r̂ûĤ

24 35: ðA2Þ

To determine the averaged quantities, we firstly define
z1 ¼

ffiffi
r
p

q
; z2 ¼

ffiffi
r
p

q
u; z3 ¼

ffiffiffiffiffiffi
rp
p

. The averaged
quantities are composed from functions of arithmetic
mean �a ¼ aLþaR

2 and logarithmic mean as defined in
Appendix B. Based on equation A1, the quantities
used in the flux are as follows

û¼z2
z1
; r̂¼z1z

ln
3 ; bp1¼z3

z1
; bp2¼gþ1

2g
zln3
zln1
þg�1

2g
z3
z1
; ðA3Þ

â ¼ ðg bp2
r̂
Þ
1
2; Ĥ ¼ â2

g� 1
þ û2

2
: ðA4Þ

Appendix B. Logarithmic mean

Let z ¼ aL
aR
. Define alnðL;RÞ ¼ aLþaR

lnðzÞ
z�1
zþ1 where

lnðzÞ¼2ð1�z
1þzþ

1

3

ð1�zÞ3

ð1þzÞ3
þ1
5

ð1�zÞ5

ð1þzÞ5
þ1
7

ð1�zÞ7

ð1þzÞ7
þOðz9ÞÞ:

To calculate the logarithmic mean we use the following
subroutine:

Algorithm B.1

(1) Set the following: z ¼ aL
aR
; f ¼ z�1

zþ1 ; u ¼ f � f
(2) If ðu < EÞ
(3) F ¼ 1:0þ u=3:0þ u � u=5:0þ u � u � u=7:0
(4) Else

F ¼ lnðzÞ=2:0=ðfÞ
thus

alnðL;RÞ ¼ aL þ aR
2F

; E ¼ 10�2:
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